Statistical methods are a key part of data science, yet few data scientists have formal statistical training. Courses and books on basic statistics rarely cover the topic from a data science perspective. The second edition of this popular guide adds comprehensive examples in Python, provides practical guidance on applying statistical methods to data science, tells you how to avoid their misuse, and gives you advice on what’s important and what’s not.Many data science resources incorporate statistical methods but lack a deeper statistical perspective. If you’re familiar with the R or Python programming languages and have some exposure to statistics, this quick reference bridges the gap in an accessible, readable format.With this book, you’ll learn:Why exploratory data analysis is a key preliminary step in data scienceHow random sampling can reduce bias and yield a higher-quality dataset, even with big dataHow the principles of experimental design yield definitive answers to questionsHow to use regression to estimate outcomes and detect anomaliesKey classification techniques for predicting which categories a record belongs toStatistical machine learning methods that “learn” from dataUnsupervised learning methods for extracting meaning from unlabeled data.
Peter Gedeck
O'Reilly Media; 2nd edition (June 2, 2020)
368 pages
English
978-1492072942
File Size: 16 MB
Available File Formats: PDF AZW3 DOCX EPUB MOBI TXT or Kindle audiobook Audio CD(Several files can be converted to each other)
Language: English, Francais, Italiano, Espanol, Deutsch, chinese
Peter Bruce is the Founder and Chief Academic Officer of the Institute for Statistics Education at Statistics.com, which offers about 80 courses in statistics and analytics, roughly half of which are aimed at data scientists. He has authored or co-authored several books in statistics and analytics, and he earned his Bachelor’s degree at Princeton, and Masters degrees at Harvard and the University of Maryland.^Andrew Bruce, Principal Research Scientist at Amazon, has over 30 years of experience in statistics and data science in academia, government and business. The co-author of Applied Wavelet Analysis with S-PLUS, he earned his bachelor’s degree at Princeton, and PhD in statistics at the University of Washington^Peter Gedeck, Senior Data Scientist at Collaborative Drug Discovery, specializes in the development of machine learning algorithms to predict biological and physicochemical properties of drug candidates. Co-author of Data Mining for Business Analytics, he earned PhD’s in Chemistry from the University of Erlangen-Nürnberg in Germany and Mathematics from Fernuniversität Hagen, Germany. <div id="
About Aaovo.com :
We are committed to sharing all kinds of e-books, learning resources, collection and packaging, reading notes and impressions. The book resources of the whole station are collected and sorted by netizens and uploaded to cloud disk, high-definition text scanning version and full-text free version. This site does not provide the storage of the file itself.
Description of file download format: (Note: this website is completely free)
The e-books shared by this site are all full versions, most of which are manually refined, and there are basically no omissions. Generally, there may be multiple versions of files. Please download the corresponding format files as needed. If there is no version you need, it is recommended to use the file format converter to read after conversion. Scanned PDF, text PDF, ePub, Mobi, TXT, docx, Doc, azw3, zip, rar and other file formats can be opened and read normally by using common readers.
Copyright Disclaimer :
This website does not store any files on its server. We only index and link to the content provided by other websites. If there is any copyrighted content, please contact the content provider to delete it and send us an email. We will delete the relevant link or content immediately.
Download link description :
We usually use Dropbox, Microsoft onedrive and Google drive to store files. Of course, we may also store backup files in other cloud content management service platforms such as Amazon cloud drive, pcloud, mega, mediafire and box. They are also great. You can choose the download link on demand.
File Size: 16 MB